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The dynamics of a foggy medium is characterized by the presence of different phases of matter 
in the same flow field necessitating the consideration of additional nonequilibrium processes as 
compared to conventional gasdynamics. As can be seen from the works of Marble (1969, t970) 
and others (see, e.g. Pai 1971; Pai & Hsieh 1973; Soo 1976; Sha & Soo 1978), the main 
difficulties encountered in analyzing the nonequilibrium features of such a medium have much 
to do with the source terms corresponding to the gas-droplet interactions as also with the 
increased number of conservation equations. Acoustic waves propagating in a gas-particle 
medium containing volatile or nonvolatile particles have been discussed before (Marble 1969, 
1970; Marble & Wooten 1970; Marble & Candel 1975; Lyman &Chen 1978; Bhutani & 
Chandran 1977; Davidson 1977) and their practical applications in physical and industrial fields 
have been indicated. These studies have brought out clearly the added effect of particulate 
phase as far as sound dispersion and attenuation are concerned. 

In furtherance of the acoustic analysis, the present study has been taken up with a view to 
fruitfully apply Whitham's (1959) approximation technique of reducing higher order wave 
equations to lower order equations as applied to a foggy medium. As has been demonstrated 
before by Cogley & Vincenti (1969), such an approach has been seen to yield additional insights 
into the propagation features of small disturbances involving, among others, the predominance 
of specific waveforms in specific temporal regions. 

THE ACOUSTIC WAVE EQUATIONS 

When the dynamical equations of a gas-particle system undergoing phase change are 
subjected to linear acoustic approximations, a single wave equation satisfying any field variable 
4~ has been derived by Marble (1969). This equation can be recast into the dimensionless form 
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In the above, ~'v, rr, ro are, respectively, the velocity, thermal and diffusion equilibration 
times, oJ the frequency used for nondimensionalizing these, c the specific heat of particle cloud, 
ce the specific heat of gas at constant pressure, ht the latent heat of vaporization and p, pp, pv 
are the densities of gas, particle and vapor phases, respectively. It may also be noted here that 
the "constrained" sound speeds ao through a3 have been nondimensionalized with respect to 
the frozen speed of sound and the "composite" speeds a~ and a: have been introduced in view 
of the instabilities of intermediate waves. (For a detailed discussion of the physical features of 
propagation, see Marble (1969), Bhutani & Chandran (1977)). Also, the dimensionless parameters 
I/a,,, l /ar ,  l /ao ,  known as Damkfhler numbers, compare typical relaxation parameters ~'~. rr, ro 
with a typical flow time 1/o~. 

In the discussion that follows, it is assumed that the disturbances are right-running waves 
starting from the origin and spanning the right-half space with assumed homogeneous initial 
conditions. To get the equivalent lower order equations, we follow first the frozen speed of 
sound and put ( a [ O t ) ~ - - ( a / d x ) i n  [1] to yield 
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Similarly, following the other speeds a~, a2, a3, [1] reduces, respectively, to 
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Finally, the "degenerate" speed 0 is followed to yield 

~,,, + a,~,,  + a2c~, + a3~ = 0. [61 

It can be shown that [6] does not in any way help the present study because it requires an 
inhomogeneous initial condition to represent a unique physical situation. Thus the single 
equation [1] has been reduced to the system of four lower order equations [2]-[5] each of which 
contains the relevant signalling operator corresponding to the speed being followed. 

ANALYSIS OF HARMONIC DISTURBANCES 

We shall use here the system of equations obtained before to study the disturbances 
generated by the harmonic oscillations of a planar wall. Writing 

c~(x, t) = f ( x )  e i' 

we see that the solutions of [2]-[5] can be expressed, respectively, as 

~bk(x, t) = C,  exp [ - 8kX + i(t -- A,X)], (k = 0, l, 2, 3) [7] 

where the dimensionless damping coet~cients 8k and wave speeds (1/Ak) are given by 
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As per the approximations involved in the present method, the four solutions, [7], are 
expected to span the whole region. To see how this is so consider the exact solution 

~b(x, t) = C exp [ - 8x + i(t  - Ax)], [9] 

where 
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where the upper sign goes with 6 and the lower sign with A. 
The complexity of the result [lO] testifies to the desirability of approximate methods. 

Moreover, this result does not give any idea of the region where each wave form is 
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predominant. The expressions of damping factors and wave speeds are functions of 7/, kp, kv, 7, 

rv, ~'r, ro and, therefore, a quantitative comparison of the exact and approximate results is still 
difficult if the number of parameters is not reduced. To this end, we observe that rv and rT are 
equal for Prandtl number (2•3) and since the Schmidt number is nearly unity, zo is also nearly 
equal to zv and fT. Accordingly, we assume that rv = ~'T = zo. 

Since the Damk(Jhler number involves both o) and To, before discussing the general wave 
structure it will be revealing to derive the limiting values of (5 and (I/A) corresponding to the 
extreme limits of o~ and ~'v. As expected, we see that these limiting cases give only the initial 
and final motion. In order to get a detailed picture of the structure of waves and to see how the 
four solutions make up the total solution and their regions of validity, we have plotted in figure 
1 the approximate and exact damping and wave speeds. It is seen that the approximate results 
are not uniformly valid as the Damk6hler number varies from :~ to 0. There are transition 
regions where one solution takes over from the other discontinuously. For instance, in figure 1, 
8o and (1/Ao) are valid in the initial stages of high frequency motion till about a~ = 0.3 and the 
solution corresponding to a, takes over from the preceding one discontinuously. This is valid in 
the neighbourhood of av = 1.0 whereas the region 1< a~ < 100 is covered by the solution 
following the speed a2. For av >> 1, 83 intersects (52 near a~ = 100 and the final motion is given by 
the equilibrium speed solution. Also, it has been seen that a steady increase in the particle 
loading results in a gradual decrease in the regions of validity of intermediate waves. 

In conclusion, the author thanks Prof. O. P. Bhutani for helpful discussions and Prof. F. E. 
Marble for his comments on an earlier version of this note. 
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